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CONSPECTUS: The search for new catalysts for more efficient, selective
chemical transformations and for the synthesis of new functional materials
has been a long-standing research subject in both academia and industry. To
develop new generations of catalysts that are superior or complementary to
the existing ones, exploring the potential of untapped elements is an
important strategy. Rare-earth elements, including scandium, yttrium, and
the lanthanides (La−Lu), constitute one important frontier in the periodic
table. Rare-earth elements possess unique chemical and physical properties
that are different from those of main-group and late-transition metals. The
development of rare-earth-based catalysts by taking the advantage of these
unique properties is of great interest and importance.
The most stable oxidation state of rare-earth metals is 3+, which is difficult
to change under many reaction conditions. The oxidative addition and
reductive elimination processes often observed in catalytic cycles involving
late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-
transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than
the electron numbers) of the ligands. In the lanthanide series (La−Lu), the ionic radius gradually decreases with increasing
atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions
generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both
nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the
alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C−C bond affinity of the 3+ metal ions, can
make rare-earth metals unique candidates for the formation of excellent single-site catalysts.
This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and
application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization,
carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2
with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding
cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide
range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The
cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes
and alkynes through insertion of the unsaturated C−C bond into the metal−alkyl bond followed by transmetalation between the
resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C−H bond
activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of
alkenes into the resulting new metal−carbon bond can lead to catalytic C−H bond alkylation of the organic substrates. Most of
these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of
late-transition-metal catalysts.

1. INTRODUCTION

The development of the organometallic chemistry of rare-earth
elements has largely relied on the use of cyclopentadienyl (Cp)
groups as supporting ligands. The Cp-ligated rare-earth
complexes reported to date can be generally grouped into
three types depending on the number of Cp ligands per metal
(Figure 1a). Rare-earth complexes bearing three Cp ligands per
metal (type A) were first reported in early 1950s.1 Complexes of

this type do not show significant reactivity because all of the
metal−ligand bonds are highly stable metal−Cp π bonds, except
when the Cp ligands are very sterically crowded.2 In early 1980s,
monoalkyl and monohydride rare-earth complexes with two Cp
ligands per metal (type B) were reported.3 These complexes
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possess highly reactive alkyl or hydride species and are effective
for a number of chemical transformations,4 including the
polymerization and copolymerization of ethylene and polar
monomers such as alkyl acrylates and lactones through
nucleophilic addition of the alkyl or hydride species to a metal-
coordinated monomer.5 However, the polymerization activity of
the neutral metallocene alkyl and hydride complexes for higher
olefins such as 1-alkenes, styrene, dienes, and cyclic olefins is
generally poor because the metal centers in these complexes are
relatively saturated both electronically and sterically and it is
therefore difficult for them to accept the coordination of less
reactive higher olefins. Recently, dialkyl rare-earth complexes
bearing one Cp ligand per metal (such as C) have received much
attention.6 Removal of one of the two alkyl groups by an
appropriate borate compound can generate the corresponding
cationic monoalkyl species (Figure 1b), which possess a more
electropositive, less sterically crowdedmetal center and can show
much higher and unique catalytic activity for the polymerization
and copolymerization of a wide range of olefins and other related
transformations. Moreover, hydrogenolysis of the dialkyl
complexes with H2 has led to the formation of a new family of
molecular hydride clusters showing novel features in both
structure and reactivity (Figure 1b).6a,c,7 This Account focuses on
the synthesis and catalytic applications of the half-sandwich and
analogous rare-earth dialkyl complexes of type C.

2. SYNTHESIS OF HALF-SANDWICH RARE-EARTH
DIALKYL COMPLEXES

The isolation of a highly reactive half-sandwich rare-earth metal
dialkyl complex is usually more difficult than that of a monoalkyl
complex bearing two Cp ligands because of ligand disproportio-
nation problems. The use of an appropriate metal/ligand
combination is rather critical. With an appropriate metal/ligand
combination, a series of half-sandwich rare-earth dialkyl
complexes have been synthesized either by acid−base reactions
between trialkyl rare-earth complexes (MR3) and neutral
cyclopentadiene ligands (CpH) or by metathesis reactions
between the alkali-metal salts of the Cp ligands and appropriate
rare-earth precursors (Scheme 1). In the case of the smallest rare-
earth metal, Sc, half-sandwich bis(trimethylsilylmethyl) com-
plexes bearing Cp ligands with and without substituents on the
Cp ring (e.g., 1a−d, 1e-Sc, 1f and, 1g) have been isolated and

structurally characterized.8 In contrast, the isolation of the
analogous half-sandwich complexes of larger metals such as Y,
Gd, Dy, Ho, Er, Tm, and Lu (1e-M) required the use of the
sterically demanding ligand C5Me4SiMe3 to prevent ligand
redistribution.7c,8a,9 When the dimethylaminobenzyl group, o-
CH2C6H4NMe2, is used as an alkyl ligand in place of the
trimethylsilylmethyl group, CH2SiMe3, relatively smaller cyclo-
pentadienyl ligands such as C5H5 and C5Me5 can also afford the
isolable half-sandwich dialkyl complexes of a wide range of rare-
earthmetals (2-M) because of intramolecular coordination of the
amino group to the metal center (Scheme 1d).10−12 Enantiopure
half-sandwich rare-earth bis(aminobenzyl) complexes such as 2f-
Sc can also be prepared similarly by using chiral Cp ligands
(Chart 1).13 Bimetallic rare-earth dialkyl complexes such as 3
supported by silylene-linked Cp−phosphido ligands14 and
mononuclear dialkyl complexes such as 415 and 516 bearing
non-Cp ligands were prepared analogously.
The reaction of the half-sandwich bis(trimethylsilylmethyl)-

scandium complex 1e-Sc with an equimolar amount of
[Ph3C][B(C6F5)4] followed by recrystallization in tetrahydro-
furan (THF) gave the structurally characterizable separated-ion-
pair complex 6.8b The similar reaction of the bis(aminobenzyl)
complex 2e-Sc with [PhNMe2H][B(C6F5)4] in chlorobenzene
afforded the contact-ion-pair complex 7, in which there are weak
interactions between the metal center and two F atoms in the
borate anion unit [B(C6F5)4], as shown by X-ray diffraction
analysis.11

3. OLEFIN POLYMERIZATION AND
COPOLYMERIZATION

The cationic rare-earth monoalkyl species generated by the
reaction of the dialkyl precursors with an appropriate borate
compound such as [Ph3C][B(C6F5)4] or [PhNMe2H][B-
(C6F5)4] showed excellent catalytic activity for the polymer-
ization and copolymerization of a wide range of olefins.

Figure 1. (a) Rare-earth complexes bearing different numbers of
cyclopentadienyl and alkyl ligands per metal. (b) Transformation of
half-sandwich rare-earth dialkyl complexes (C) to new active species.

Scheme 1. Typical Reactions for the Synthesis of Half-
Sandwich Rare-Earth Dialkyl Complexes
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Significant influences of the ancillary ligands and themetal ion on
the catalyst activity and selectivity were observed in many cases.
The half-sandwich Sc complexes with relatively small Cp

ligands such as C5H5 (1a and 2a-Sc) and C5H4Me (1b and 2b)
are active for the polymerization of styrene but gave atactic
polymers without showing stereoselectivity.8c In contrast, the Sc
complexes with larger Cp ligands such as C5HMe4 (1c and 2c-
Sc), C5Me5 (1d and 2d-Sc), and C5Me4SiMe3 (1e-Sc and 2e-Sc)
showed excellent syndiotactic selectivity and livingness for the
polymerization of styrene (Scheme 2).8a,c,17 In a series of rare-
earth alkyl complexes bearing the C5Me4SiMe3 ligand, the
smallest one, 1e-Sc, showed the highest activity, while complexes
of larger metals (such as 1e-Y, 1e-Gd, and 1e-Lu) showed much
lower activities (albeit with similarly high syndiotacticity) under
the same conditions, probably because the interaction between a
larger metal center and the phenyl group of a benzylic species is
stronger, which could retard the subsequent styrene insertion
(see Scheme 2).8a,18 In agreement, a Lu half-sandwich complex
with a coordinative pyridyl substituent on the Cp ligand was
found to show higher activity than the pyridyl-free analogue.19

In the presence of both styrene and ethylene, the
C5Me4SiMe3-ligated Sc complex 1e-Sc showed excellent activity
and selectivity for the copolymerization of the two monomers,
affording for the first time multiblock styrene−ethylene
copolymers with unique syndiotactic polystyrene (sPS) blocks
connected by polyethylene units (Scheme 3a).8a,18 The resulting
copolymers showed much-improved mechanical properties
together with excellent heat and chemical resistance20 compared
with homo-sPS, which is brittle and difficult to process. Similarly,
the copolymerization of styrene with 1,3-conjugated dienes such
as isoprene and butadiene by 1e-Sc/[Ph3C][B(C6F5)4]

21,22 or a

modified Lu analogue19 gave the corresponding block
copolymers containing stereoregular syndiotactic polystyrene
blocks (Scheme 3b,c).
Copolymerizations of ethylene with a wide range of olefin

monomers such as 1-hexene, isoprene, 1,3-cyclohexadiene
(CHD), norbornene, dicyclopentadiene, and 1,6-heptadiene
have also been achieved by using 1e-Sc/[Ph3C][B(C6F5)4]. The
copolymerization of ethylene with 1-hexene afforded copolymers
containing isolated butyl branches in the chain backbone
(Scheme 3d).23 The catalyst activity reached as high as 2.3 ×
103 kg (mol of Sc)−1 atm−1 h−1 at room temperature, which is
comparable to those reported for the most active group-4 metal
catalysts. The copolymerization of ethylene with isoprene by 1e-
Sc/[Ph3C][B(C6F5)4] yielded for the first time alternating
isoprene−ethylene copolymers (Scheme 3e),8b and the copoly-
merization of CHD with ethylene afforded the first random
CHD−ethylene copolymers with high cis-1,4 selectivity (Scheme
3f).24 Copolymerizations of ethylene with cyclic olefins such as
norbornene and dicyclopentadiene took place in an alternating
fashion with extremely high activity (Scheme 3g,h).25,26

The sequential copolymerization of styrene and ε-caprolac-
tone in the presence of 1e-Sc or 1f-Sc with [Ph3C][B(C6F5)4]
afforded diblock copolymers with well-controlled molecular
weight and molecular weight distribution (Scheme 4).27 The
resulting copolymers possess a hydrophobic hard syndiotactic
polystyrene block and a hydrophilic soft polycaprolactone block,
thus exhibiting unique physical and mechanical properties.
The bis(trimethylsilylmethyl)scandium complex bearing a Cp

ligand with a phosphine oxide side arm (1g) is especially efficient
for the copolymerization reactions of 1,6-heptadiene. In the
presence of 1,6-heptadiene and styrene, 1g/[Ph3C][B(C6F5)4]

Chart 1. Selected Examples of Rare-Earth Dialkyl Complexes and their Cationic Monoalkyl Derivatives

Scheme 2. General Process for Syndiospecifc Polymerization of Styrene by a Half-Sandwich Rare-Earth Catalyst
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selectively afforded the random cyclocopolymers having both
five- and six-membered-ring cyclic units together with atactic
polystyrene units (Scheme 5a), while side-arm-free scandium
complexes such as 1e-Sc and 2e-Sc gave a mixture of
homopolymers under the same conditions.28 The copolymeriza-
tion of 1,6-heptadiene with ethylene by 1g selectively gave
soluble 1,6-heptadiene−ethylene random copolymers (Scheme
5b), whereas the THF-coordinated complex 1e-Sc yielded a
significant amount of insoluble materials, possibly resulting from
cross-linking reactions.29 The cyclocopolymerization of 1,6-
heptadiene with isoprene by 1g yielded alternating copolymers in
which 1,6-heptadiene was selectively cyclized to a methylene-1,3-
cyclohexane unit with high cis selectivity (99%) (Scheme 5c).8d

Complex 1e-Sc or 2e-Sc in combination with [Ph3C][B-
(C6F5)4] also served as an excellent catalyst for the
terpolymerization of styrene, ethylene, and a cyclic olefin such
as dicyclopentadiene (DCPD) (Scheme 6a) to afford the
corresponding terpolymers, which show unique optical and
mechanical properties due to the presence of syndiotactic
styrene−styrene sequences.26,30 The cycloterpolymerization of

nonconjugated α,ω-dienes such as 1,5-hexadiene8c and 1,6-
heptadiene31 with styrene and ethylene was achieved using the
THF-free scandium complex 2e-Sc (Scheme 6b,c), while the
THF-coordinated complex 1e-Sc yielded cross-linked insoluble
polymers under the same conditions.
Significant influences of the ancillary ligands on the regio- and

stereoselectivity of isoprene polymerization were observed. For
example, the sterically demanding C5Me4SiMe3-ligated complex
1e-Sc did not show significant regio- or stereoselectivity (3,4/1,4
≈ 65/35 at room temperature), while the smaller C5H5-ligated
complex 1a showed high cis-1,4 selectivity (95%) under the same
conditions.8b,32 The binuclear dialkylyttrium complex 3 in
combination with [Ph3C][B(C6F5)4] showed high 3,4-selectivity
and high isospecificity for the polymerization of isoprene,
affording for the time almost perfect isotactic 3,4-polyisoprene
(3,4-selectivity = 100%,mmmm > 99%).14 The resulting isotactic
3,4-polyisoprene is a crystalline polymer with a melting point of
162 °C. The amidinate-ligated bis(aminobenzyl)yttrium com-
plex 4 also showed high isotactic 3,4-selectivity for isoprene
polymerization (3,4-selectivity up to 99.5%, mmmm up to

Scheme 3. Selected Examples of Half-Sandwich Scandium-Catalyzed Copolymerization Reactions

Scheme 4. Block Copolymerization of Styrene with Caprolactone
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99%).15b In contrast, the bis(phosphinophenyl)amido (PNP)-
ligated dialkylyttrium complex combined with [PhMe2NH][B-

(C6F5)4] showed high cis-1,4 selectivity and excellent livingness
for the polymerization of isoprene, yielding for the first time

Scheme 5. Copolymerization of 1,6-Heptadiene with Styrene, Ethylene, and Isoprene

Scheme 6. Terpolymerization of Styrene, Ethylene, and Dicyclopentadiene or α,ω-Dienes

Scheme 7. Regio- and Stereospecific Chain-Shuttling Terpolymerization of Styrene, Isoprene, and Butadiene
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polyisoprene with both high cis-1,4 content (>99%) and a narrow
molecular weight distribution (Mw/Mn < 1.10).16

In the presence of a chain-shuttling agent such as
triisobutylaluminum, the combination of the C5Me4SiMe3-
ligated catalyst 1e-Sc, which is highly active for the syndiospecific
polymerization of styrene but less active for the polymerization
of isoprene, with the C5H5-ligated catalyst 1a, which is highly
active for the cis-1,4-polymerization of isoprene but less active for
styrene, enabled the first regio- and stereospecific copolymeriza-
tion of styrene and isoprene, yielding copolymers containing
perfect syndiotactic polystyrene and cis-1,4-polyisoprene
blocks.33 In a similar fashion, the regio- and stereospecific
three-component copolymerization of styrene, isoprene, and
butadiene has also been accomplished (Scheme 7).33 The
analogous chain-shuttling copolymerization of styrene and
isoprene by combination of a half-sandwich lanthanum catalyst
and a neodymium metallocene catalyst afforded amorphous
copolymers containing trans-1,4-isoprene blocks and atactic
styrene sequences.34

4. METHYLALUMINATIONOFALKENESANDALKYNES
HAVING AN ETHER TETHER GROUP

The methylalumination of alkenes and alkynes is of much
interest and importance, as it can simultaneously incorporate a

methyl group and a reactive aluminum species into carbon
skeletons.35 Group-4 metallocenes were previously known to
serve as catalysts for this transformation. Analogously, the half-
sandwich dialkylscandium complexes 2d-Sc and 2e-Sc in
combination with [Ph3C][B(C6F5)4] could also serve as
excellent catalysts for the regioselective methylalumination of
alkenes having an alkoxy or siloxy tether group (Table 1).36 In
contrast to group-4 metal catalysts, with the scandium catalysts

the alumination took place at the carbon atom proximal to the
ether group and the methylation distal to the ether group,
possibly because of the initial strong interaction between the
electropositive scandium ion and the ether group.36 The
corresponding secondary alcohols were obtained in high yields
upon oxidation of the resulting alkylaluminum species with O2
(Table 1).
The regio- and stereoselective methylalumination of alkynes

could also be achieved in a similar fashion (Tables 2 and 3).36

Trapping the resulting alkenylaluminum intermediates with
electrophiles led to the formation of a variety of multisubstituted
alkenes with high selectivity in high yields.

5. C−H ADDITION OF ANISOLES TO OLEFINS
The C−H bond addition of anisoles to alkenes is the most
straightforward and atom-economical route for the synthesis of
alkylated anisole derivatives, which are important structure
motifs in many useful materials such as pharmaceuticals, natural
products, and fluorescent dyes. Conventional Lewis acid and
late-transition-metal catalysts usually show poor selectivity and
give a mixture of ortho- and para-alkylation products. Neutral
metallocene and half-sandwich rare-earth monoalkyl or hydride
complexes can induce ortho-metalation37 and -silylation38 of
anisoles in a regioselective fashion, but these neutral rare-earth
complexes show no activity for the catalytic C−H addition of
anisoles to alkenes because of their low reactivity with alkenes. In
contrast, the cationic half-sandwich rare-earth alkyl complexes
can serve as excellent catalysts for the ortho-selective C−H
alkylation of anisoles with various alkenes because the cationic

Table 1. Regioselective Methylalumination of Terminal and
Internal Alkenes Having an Ether Tether Group

Table 2. Regio- and Stereoselective Methylalumination of
Aryl- and Alkyl-Substituted Alkynes Having an Ether Tether
Group
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rare-earth anisyl species formed by ortho-metalation of anisoles
can show high activity for alkene insertion.
As shown in Table 4, the scandium catalyst 2d-Sc/[Ph3C]-

[B(C6F5)4] showed high activity and selectivity for the ortho C−
H alkylation of anisole with 1-octene, norbornene, allyltrime-
thylsilane, and vinyltrimethylsilane.39 In the case of 1-octene and
allyltrimethylsilane, the branched alkylation products were
formed in high yields, while in the case of vinyltrimethylsilane,
the linear alkylation product was obtained exclusively.
In the reaction of anisole with styrene, 2d-Sc gave a mixture of

1:1 and 1:2 addition products together with some oligomers
formed by successive styrene insertion because of its extremely
high activity for styrene polymerization.8a In contrast, the
analogous yttrium complex 2d-Y, which is less effective for the
polymerization (or successive insertion) of styrene,8a exclusively
afforded the 1:1 C−H addition product under the same
conditions. In all cases, the linear alkylation products were
formed exclusively (Table 5).39 Halogen and allyl substituents
are compatible with the catalyst.
In the case of 2-methyl-substituted anisoles, the alkylation

occurred exclusively at the benzylic sp3 C−H bond rather than at
the aromatic sp2 C−H bond because of steric influence,
selectively affording the benzylic C−H alkylation products
(Table 6).39 In the reaction of 2,4,6-trimethylanisole with 1-
octene, the alkylation took place predominantly at one of the two
o-methyl groups, whereas no alkylation at the p-methyl group
was observed (Table 6, run 4), suggesting that the interaction

Table 3. Regio- and Stereoselective Methylalumination of
Trimethylsilyl-Substituted Alkynes Having an Ether Tether
Group

Table 4. C−H Addition of Anisole to Olefins

Table 5. C−H Addition of Anisoles to Styrenes
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between the methoxy group and the catalyst metal center is
crucial in the present C−H alkylation reaction.
Mechanistically, the present ortho-selective C−H alkylation of

anisoles with olefins could be initiated by coordination of the
oxygen atom of an anisole compound to the electropositive metal
center of the catalyst, followed by deprotonative activation of an
ortho C−H bond with the rare-earth alkyl species. The

subsequent CC double bond insertion into the newly formed
metal−anisyl bond followed by deprotonation of another
molecule of anisole completes the catalytic cycle (Scheme 8).39

The polymerization or successive insertion of an olefin may be
suppressed by the competitive anisole coordination and the
subsequent C−H activation. Kinetic isotope effect studies
suggested that C−H bond activation may not be involved in
the rate-determining step, while the coordination of anisole to
the catalyst metal center might play an important role.

6. C−H ADDITION OF PYRIDINES TO OLEFINS
Cationic zirconium metallocenes were known to serve as a
catalyst for the C−H addition of α-picoline to propylene in the

presence of H2.
40 This transformation was accompanied by the

hydrogenation of propylene with H2 as a side reaction. Neutral
yttrium metallocene complexes could catalyze the ethylation of
pyridine with ethylene at high pressure (40 bar) and high
temperature (110 °C) but showed no activity for higher olefins.41

In contrast, the cationic half-sandwich rare-earth alkyl complexes
served as excellent catalysts for the C−H alkylation of pyridines

Table 6. C−H Addition of o-Methylanisoles to Olefins

Scheme 8. Possible Mechanism for the Catalytic C−H
Alkylation of Anisoles with Olefins

Table 7. C−H Addition of 2-Substituted Pyridines to Various
Olefins
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with various olefins, similar to the C−H alkylation of anisoles
described above.
As shown in Table 7, the combination of 2d-Sc or 2d-Y with

B(C6F5)3 showed excellent activity and selectivity for the ortho
C−H addition of 2-subsituted pyridines to various olefins such as
ethylene, 1-hexene, 1,3-cyclohexadiene, and norbornene, afford-
ing the corresponding alkylated or allylated pyridine derivatives
in high yields.42 In the case of styrenes (Table 8), the yttrium
catalyst 2d-Y showed better performance than the scandium
analogue 2d-Sc, selectively yielding linear alkylation products as
in the case of anisoles. It is also worth noting that the selectivity of
the rare-earth catalysts stands in contrast to that of late-
transition-metal catalysts. The latter resulted in alkylation at the
para position of pyridine and predominantly gave the linear
product in the case of a 1-alkene and the branched product in the
case of styrene.43

Analogously to the reaction of anisoles, the C−H alkylation of
pyridines may take place through initial coordination of the
pyridine nitrogen atom to the catalyst metal center and
subsequent ortho C−H bond activation by the rare-earth alkyl
species, followed by the insertion of an olefin CC double bond
into the resulting metal−pyridyl bond.42,44 Substituent-free
pyridine did not undergo the catalytic C−H alkylation in any
case, probably because the coordination of unsubstituted
pyridine to the catalyst metal center is too strong. Kinetic
isotope effect studies suggested that C−H bond activation could
be involved in the rate-determining step in the present C−H
alkylation reactions of pyridines.42 The analogous C−H bond
addition of 2-substituted pyridines to allenes was also achieved by
using 2d-Sc/[Ph3C][B(C6F5)4] as a catalyst, affording the
corresponding alkenylated pyridine derivatives in high yields
with excellent regio- and stereoselectivity.45

When 2,6-dialkyl-substituted pyridines such as 2,6-lutidine
were reacted with an olefin in the presence of 2a-Y/[Ph3C][B-

(C6F5)4] or 2d-Y/[Ph3C][B(C6F5)4], the reaction took place
selectively at the ortho benzylic sp3 C−H bonds (Table 9).10 A
significant influence of the Cp ligand was observed. For example,
the sterically demanding C5Me5-ligated complex 2d-Y afforded
the monoalkylation product as the major product in the reaction
of 2,6-lutidine with 4 equiv of styrene (Table 9, run 1), while the
smaller C5H5-ligated complex 2a-Y led to selective formation of
the dialkylation product under the same conditions (Table 9, run
2). The reaction of 2,6-lutidine with ethylene (1 atm) catalyzed
by 2a-Y/[Ph3C][B(C6F5)4] gave the tetraethylation product
exclusively (Table 9, run 7).
Very recently, the enantioselective C−H addition of 2-

substituted pyridines to 1-alkenes was also achieved by using a
chiral half-sandwich rare-earth alkyl catalyst such as 2f-Sc/
[Ph3C][B(C6F5)4], affording corresponding branched alkylation
products with high enantioselectivity in high yields (Table 10).13

7. CONCLUSIONS AND PROSPECTS
We have demonstrated that the rare-earth metal dialkyl
complexes bearing one monoanionic ancillary ligand (such as

Table 8. C−H Addition of 2-Ethylpyridine to Styrenes Table 9. C−H Addition of 2,6-Lutidine to Various Olefins
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Cp) per metal can serve as excellent platforms for the formation
of unique single-site catalysts for the polymerization and
copolymerization of a wide range of olefins as well as for other
chemical transformations such as methylalumination of alkenes
and alkynes and C−H alkylation of anisoles and pyridines with
alkenes. All of these catalytic transformations are initiated by
similar cationic monoalkyl rare-earth species formed by removal
of one alkyl group from the dialkyl precursors with an activator
such as [Ph3C][B(C6F5)4]. The catalyst activity and selectivity
can be fine-tuned simply by changing the supporting ligands
and/or central metal ion in a series of complexes having similar
structures. Obviously, the unique performance of these catalysts
should originate from the synergy of the characteristic features of
the rare-earth elements, such as the Lewis acidity, heteroatom
and CC double bond affinity, and stability of the 3+ oxidation
state of the metal ions and the strong nucleophilicity and basicity
of the metal carbyl species.

It is also worth noting that hydrogenolysis of rare-earth metal
dialkyl complexes such as 1, 2, 4, and 5 has led to the formation of
a new family of well-defined rare-earth metal hydride clusters that
show novel features in both structure and reactivity.6,7 A similar
approach to the analogous group-4 metal hydrides has recently
led to the synthesis of a novel titanium hydride cluster that can
cleave and hydrogenate dinitrogen (N2)

46 and benzene47 at
room temperature. Moreover, half-sandwich rare-earth dialkyl
complexes can also be used as building blocks for the synthesis of
heteromultimetallic rare-earth/d-transition metal complexes.48

With the features of rare-earth catalysis uncovered during the
last several years and ever increasing results in hand, we are quite
optimistic about further applications of half-sandwich and related
rare-earth metal catalysts for the synthesis of polymer materials
possessing new structures, new components, and possibly unique
physical, mechanical, and optical properties as well as for other
chemical transformations, including asymmetric C−H bond
functionalization. Further progress in this area can be confidently
expected in the following years.
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